ECON 214 Elements of Statistics for Economists

Session 8 - Sampling Distributions

Lecturer: Dr. Bernardin Senadza, Dept. of Economics
Contact Information: bsenadza@ug.edu.gh

UNIVERSITY OF GHANA
 College of Education
 School of Continuing and Distance Education 2014/2015-2016/2017

Session Overview

- We begin our discussion of statistical estimation with sampling distributions in this Session.
- A (sample) statistic is a random variable and as such has a probability distribution.
- The probability distribution of a statistic is called its sampling distribution.
- We examine the sampling distribution of the sample mean and sample proportion in this Session.

Session Overview

- At the end of the session, the student will
- Be able to explain why a sample is the only feasible way to learn about a population
- Be able to explain methods for selecting a sample
- Be able to define and construct a sampling distribution of the sample mean
- Be able to define and construct a sampling distribution of the sample proportion
- Be able to explain the Central Limit Theorem

Session Outline

The key topics to be covered in the session are as follows:

- Probability Sampling
- Sampling Distribution of the Sample Mean
- Sampling Distribution of the Sample Proportion

Reading List

- Michael Barrow, "Statistics for Economics, Accounting and Business Studies", $4^{\text {th }}$ Edition, Pearson
- R.D. Mason , D.A. Lind, and W.G. Marchal, "Statistical Techniques in Business and Economics", $10^{\text {th }}$ Edition, McGrawHill

Topic One

PROBABILITY SAMPLING

Why sample the population?

- The physical impossibility of checking all items in the population.
- The cost of studying all the items in a population.
- The sample results are usually adequate.
- Contacting the whole population would often be time-consuming.
- The destructive nature of certain tests.

Probability Sampling

- A probability sample is a sample selected in such a way that each item or person in the population being studied has a known likelihood of being included in the sample.

Methods of Probability Sampling

- Simple Random Sample: A sample formulated so that each item or person in the population has the same chance of being included.
- Systematic Random Sampling: The items or individuals of the population are arranged in some order.
- A random starting point is selected and then every k th member of the population is selected for the sample.

Methods of Probability Sampling

- Stratified Random Sampling: A population is first divided into subgroups, called strata, and a sample is selected from each stratum.
- Cluster Sampling: A population is first divided into subgroups (strata), and a sample of the strata is selected. The sample is then taken from these selected strata.
- A sampling error is the difference between a sample statistic and its corresponding parameter.

Topic Two

SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

Sampling Distribution of the Sample

Mean

- Generally there are a large number of possible samples that can be selected from a population.
- The value of any statistic (such as the sample mean) computed from a sample will vary from sample to sample.
- A statistic is therefore a random variable and as such has a probability distribution.
- The probability distribution of a statistic is called its sampling distribution.

Sampling Distribution of the Sample

Mean

- The sampling distribution of the (sample) mean is the probability distribution for the possible values of the sample mean.
- For any given sample of size \boldsymbol{n} taken from a population with mean $\boldsymbol{\mu}$ and standard deviation σ, the value of the sample mean would vary from sample to sample.

Sampling Distribution of the Sample

Mean

- Illustration: A PhD class in economics has five students. Each of the students reported the number of hours they studied during the first week of the $2^{\text {nd }}$ semester.

No.	Student	Hours
1	Kofi	22
2	Ama	26
3	Esi	30
4	Eric	26
5	Mensah	22

- If two students are selected randomly, how many different samples are possible?

Sampling Distribution of the Sample

 Mean| Sample | Total Hrs | Mean |
| :---: | :---: | :---: |
| 1,2 | 48 | 24 |
| 1,3 | 52 | 26 |
| 1,4 | 48 | 24 |
| 1,5 | 44 | 22 |
| 2,3 | 56 | 28 |
| 2,4 | 52 | 26 |
| 2,5 | 48 | 24 |
| 3,4 | 56 | 28 |
| 3,5 | 52 | 26 |
| 4,5 | 48 | 24 |

- This is the combination of 5 objects taken 2 at a time. That is,

$$
{ }^{5} C_{2}=\frac{5!}{2!3!}=10
$$

Sampling Distribution of the Sample

Mean

- Organize the sample means into a sampling distribution.

Sample mean	Frequency	Rel. Freq. (Probability)
22	1	$1 / 10$
24	4	$4 / 10$
26	3	$3 / 10$
28	2	$2 / 10$

- Note that the sum of probabilities equals 1

Sampling Distribution of the Sample

Mean

- Compute the mean of the sample means and compare it with the population mean:
- The mean of the sample means $=[(22)(1)+$ (24)(4) + (26)(3) $+(28)(2)] / 10=25.2$
- The population mean $=$ $(22+26+30+26+22) / 5=25.2$
- Observe that the mean of the sample means is equal to the population mean.

Sampling Distribution of the Sample

Mean

- The sampling distribution of the (sample) mean is described by determining its expected value (mean) and standard deviation (or standard error).

Sampling Distribution of the Sample

Mean

- The expected value (mean) of the sample mean is equal to the population mean

$$
E(\bar{X})=\mu
$$

- The standard error is the population standard deviation divided by the square root of the sample size.

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Sampling Distribution of the Sample

Mean

- Example: Suppose the mean of a large population of measurements is $\mu=100$ and the population standard deviation is $\sigma=15$. For samples of size $n=36$, the expected value and standard error of the mean are:

$$
\begin{gathered}
E(\bar{X})=\mu=100 \\
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{15}{\sqrt{36}}=2.5
\end{gathered}
$$

Sampling Distribution of the Sample

Mean

- In general, if samples of size n are randomly drawn from a Normally distributed population of mean μ and variance σ^{2}, the sample mean is distributed as

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)
$$

- Example: If samples of 50 women are chosen, and the mean height is computed. The sample mean is distributed $\quad \bar{X} \sim N(166,40.32 / 50)$

Finite correction factor

- When the sample is taken from a population that is finite, a finite correction factor is required in the formula of the standard error
- That is when $n \geq .05 \mathrm{~N}$ (sample is $\geq 5 \%$ of population)
- Then the formula for the standard error becomes

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}
$$

- When the standard deviation of the population is unknown, we use the sample standard deviation.

Calculating probabilities for the sampling distributions

- We can calculate the probability that the sample mean will assume a given range of values.
- Example: What is the probability of drawing a sample of 50 women whose average height is greater than 168 cm ?

$$
Z=\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}}=\frac{168-166}{\sqrt{40.32 / 50}}=2.23
$$

- We read from the standard normal table the area to the right of $Z=2.23$ which gives $.0129[P(Z>2.23)=.0129]$

Areas Under the One-Tailed Standard Normal Curve

This table provides the area between the mean and some Z score.
For example, when Z score $=1.45$ the area $=0.4265$.

Z	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{0 . 0}$	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
$\mathbf{0 . 1}$	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
$\mathbf{0 . 2}$	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
$\mathbf{0 . 3}$	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
$\mathbf{0 . 4}$	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
$\mathbf{0 . 5}$	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
$\mathbf{0 . 6}$	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
$\mathbf{0 . 7}$	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
$\mathbf{0 . 8}$	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
$\mathbf{0 . 9}$	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
$\mathbf{1 . 0}$	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
$\mathbf{1 . 1}$	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
$\mathbf{1 . 2}$	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
$\mathbf{1 . 3}$	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
$\mathbf{1 . 4}$	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
$\mathbf{1 . 5}$	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
$\mathbf{1 . 6}$	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
$\mathbf{1 . 7}$	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
$\mathbf{1 . 8}$	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
$\mathbf{1 . 9}$	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
$\mathbf{2 . 0}$	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
$\mathbf{2 . 1}$	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
$\mathbf{2 . 2}$	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
$\mathbf{2 . 3}$	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916

The Central Limit Theorem

- If samples are taken from a population that is normally distributed, the distribution of the sample mean is also normal.
- However, for a non-normal population, as the sample size gets large, $n>25$, the distribution of the sample mean is (approximately) normal.
- This result is called the Central Limit Theorem.
- The approximation gets better, the larger the sample size.
- We can then proceed to calculate probabilities as before.

The Central Limit Theorem

- Example: An Auditor takes a sample of 50 accounts receivable to audit. If the mean value in the accounts is 200 and the standard deviation is 45 , what is the probability that the sample mean will be less than 190.
- Since n is large, the distribution of the sample mean is approximately normal
- Thus the Z value is: $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{190-200}{45 / \sqrt{50}}=-1.57$
- So $P(Z<-1.57)=.0582$ (read from the Z table)

Topic Three

SAMPLING DISTRIBUTION OF THE SAMPLE PROPORTION

Sampling distribution of the

proportion

- Many statistical investigations are carried out with the aim of estimating the proportion of the population having a specified characteristic.
- For example, we may be interested in the proportion of drug stores that sell a particular drug.
- In such cases the sample proportion is generally used as an estimate of the population proportion.
- Assume we have a population of 1000 drug stores.
- A sample of 40 is taken of which 32 sell the particular drug.

Sampling distribution of the proportion

- The sample proportion is

$$
p=\frac{X}{n}=\frac{32}{40}=.8
$$

- The population proportion is denoted

$$
\pi=\frac{X}{N}
$$

Sampling distribution of the

proportion

- If we take many samples of size n, the value of the sample proportion will vary from sample to sample.
- For the sampling distribution of the proportion, we have the expected value as

$$
E(p)=\pi
$$

- And the standard error

$$
\sigma_{p}=\sqrt{\frac{\pi(1-\pi)}{n}} \quad \text { or } \quad s_{p}=\sqrt{\frac{p(1-p)}{n}}
$$

Calculating probabilities for the sampling distributions

- Just as with the sample mean, we can calculate the probability that the sample proportion will assume a given range of values.
- Example: It is known that only 70 percent of drug stores sell a particular drug in Ghana. A sample of 40 drug stores is selected. Find the probability that more than 32 sell this drug.
- Solution: We want to find the probability that the sample mean, p, is greater than 0.8 (or 32/40).

Calculating probabilities for the sampling distributions

- The population proportion is 0.7 , the sample proportion, $p=0.8$, and sample size, $n=40$.
- Using the standard normal

$$
Z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}
$$

$$
P(p>0.8)=P\left(Z>\frac{0.8-0.7}{\sqrt{\frac{0.7(1-0.7)}{40}}}\right)=P(Z>1.38)=.0838
$$

References

- Michael Barrow, "Statistics for Economics, Accounting and Business Studies", $4^{\text {th }}$ Edition, Pearson
- R.D. Mason , D.A. Lind, and W.G. Marchal, "Statistical Techniques in Business and Economics", 10 ${ }^{\text {th }}$ Edition, McGraw-Hill

