## POLI 443 Applied Political Research

Session 2 - Areas Under the Normal Curve

Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh


## UNIVERSITY OF GHANA

College of Education
School of Continuing and Distance Education
2014/2015-2016/2017

## Areas under the Normal Curve

- To make inferences about a population we need to know the probability of a sample. We need therefore to be able to calculate the probability that a random variable with a normal probability distribution will fall within a specified interval e.g. if $X$ is a random variable which is normally distributed with mean ( $\mu$ ) and standard deviation ( $s$ ) we might need to know the probability that $X$ lies in an interval between points $a$ and $b$.

Fig 4


- The above shaded portion of the curve corresponds to the probability that $X$ will lie between $a$ and $b$. The desired area can be obtained by using a table of areas under the normal curve (ref. to normal table). The tables give areas under the normal curve between the mean and a measurement which is $Z$ standard deviations to the right of the mean ( $\mu$ ).

Fig 5


- Areas to the left of the mean need not be tabulated because the normal curve is symmetrical about the mean. Thus the area between the mean and a point $z$ (sd) to the right is the same as the area between the mean a similar point $z(s d)$ to the left of the mean (refer to normal distribution tables and work some examples with students) e.g. the area 1 sd to the right of the mean (i.e. $Z=1$ ) is 0.3413 . But the area within 1 sd of the mean (i.e. $Z=+/-1$ ) $=0.6826$ or approximately $68 \%$.

Fig 6


- Similarly the area between the mean and a point $Z=2$ sd to the right of the mean is shown in the fig. below:

Fig 7


The area within approximately 2 sd of the mean $=\mathrm{Z}=+/-2=2(0.4772)=0.9544$ or approximately $95 \%$. Suppose we wish to find the area corresponding to $\mathrm{Z}=1.64$

Fig 8


To determine how many standard deviations (s) a measurement X lies from the mean we use the standard score

$$
Z=X-(\mu) /(\delta) \text { or } X-(\bar{x}) / s
$$

To calculate the area under the normal curve between the mean ( mu ) and a specified value $X$ to the right of the mean, we first find $Z$ i.e. the number of standard deviations that $X$ lies from ( mu ) ( standardize $X$ ) using the expression:

$$
Z=\bar{x}-(\mu) / s
$$

We then refer to the normal distribution table and obtain the entry corresponding to the calculated value of $Z$. This entry is the desired area or probability under the normal curve between ( mu ) and the value of $X$. Social scientists refer to $Z$ as the $Z$ score

## Illustration 1

Suppose that X is a normally distributed random variable with mean 8 and standard deviation of 2. Find the probability that X lies between 8 and 11 i.e. what fraction of the total area lies under the curve between 8 and 11 ?

## Solution

Compute the $Z$ value for 11
From $N$ distribution tables find the area under $N$ at the $Z$ value
$Z=X-(\bar{x}) / s=11-8 / 2=1.5$

Fig 9


Required area is the shaded area. From N Distribution tables $\mathrm{Z}=$ $1.5=0.4332$. Therefore, the probability that X lies between $8 \& 11$ is 0.4332 .

## Illustration 2

In a sample of 1000 students, the mean score of an examination was 14.4 with standard deviation of 2.5. Assuming the distribution is normal (a) How many students scored between 12 \& 16 (b) How many scored above 18 and below 8 (c) what are the chances that any student selected at random will score above 15?

## Solution

(a) Students scoring between 12 and 16 will actually score any mark from 11.5 to 16.5

$$
\begin{gathered}
Z(11.5)=X-(\bar{x}) / s=11.5-14.4 / 2.5=-2.9 / 2.5=-1.16 \\
Z(16.5)=X-(\bar{x}) / s=16.5-14.4 / 2.5=2.1 / 2.5=0.84
\end{gathered}
$$



$$
Z=-1.16 \quad Z=0.84
$$

Required area $=$ Area between $Z=-1.16 \& Z=0.84$
Required area $=$ Area between $Z=-1.16 \& Z=0.84$
$=$ Area between $Z=-1.16 \& Z=0+(Z=0 \& Z=0.84)$
$=$ Area between $Z=-1.16 \& Z=0+(Z=0 \& Z=0.84)$
$=0.3770+0.2995$
$=0.3770+0.2995$
$=0.6765$
$=0.6765$

Therefore the number of students scoring between 12 \& $16=$ 0.6765 of $1000=677$

Students scoring above 18 would at least score 18.5 and those scoring below 8 would score at least 7.5
$Z(18.5)=X-((\bar{x}) / s=18.5-14.4 / 2.5=4.1 / 2.5=1.64$
The proportion of students scoring above 18 is shown in the diagram below:

Fig 11


Area shaded: From normal distribution table
$Z=1.64=0.4495$

The required area $=0.5000-0.4495=0.0505=5.05 \%$

Therefore the number of students scoring above $18=0.0505$ of $1000=50.5=51$
$Z(7.5)=X-(\bar{x}) / s=7.5-14.4 / 2.5=-6.9 / 2.5=-2.76$

Fig 12


$$
Z=2.76
$$

From Normal tables Z $=2.76=0.4971$. The shaded area $=0.5000-0.4971=0.0029=29 \%$. Therefore the number of students scoring below $8=0.29$ of $1000=2.9=3$
(C)The upper limit of 15 is 15.5
$Z(15.5)=X-(\bar{x}) / s=15.5-14.4 / 2.5=1.1 / 2.5=0.44$

Fig 13


From normal tables $Z=0.44=0.1700$. The required area therefore is $0,5000-0,1700=0.3300$. Therefore the chances that a student selected at random will score above 15 is 0.33 .

## THANK YOU

